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Abstract
Aim: Predicting distributions is fundamental to ecology, yet hindered by spatially re‐
stricted sampling, scale‐dependent relationships and detection error associated with 
field surveys. Predictive species distribution models (SDMs) are nonetheless vital 
for conservation of many species. We developed a framework for building predic‐
tive SDMs with multi‐scale data and used it to develop range‐wide breeding‐season 
SDMs for 14 marsh bird species of concern.
Location: USA.
Methods: We built SDMs using data from range‐wide surveys conducted over 
14 years, and habitat and disturbance covariates measured at multiple spatial scales. 
We built hierarchical occupancy models that included heterogeneity in detectability 
during sampling, and used Bayesian model selection to regulate model complexity 
(covariates and scales) based explicitly on spatial predictive abilities. We thus inte‐
grated model selection for optimizing out‐of‐sample prediction, range‐wide sampling 
over broad conditions, multi‐scale analyses and scale optimization, and species‐spe‐
cific detectability for a suite of wide‐ranging species.
Results: Distributions of marsh birds were affected by local wetland conditions, but 
also by agricultural, urban and hydrologic disturbances operating from local scales 
(100–500 m) to the watershed level. Variables measuring human disturbances im‐
proved prediction for most species, and every species was affected by attributes 
at >1 scale. Five species showed evidence for continental‐scale range contraction 
during the study.
Main conclusions: We demonstrate how hierarchical occupancy models can be op‐
timized for prediction across a species' range at the extent of a continent while also 
accounting for imperfect detection, and thus describe a generalizable approach that 
can be used for any species. We provide the first data‐driven, empirical SDMs built 
at the range‐wide extent for most of our 14 study species and demonstrate that 
previous studies focused on local distributions and the effects of fine‐scale wetland 
vegetation missed important broadscale drivers of occupancy for marsh birds.
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1  | INTRODUC TION

Predicting the spatial distribution of species is a fundamental task 
in ecology and biogeography (Guisan & Thuiller, 2005; Guisan et 
al., 2013). Yet, accurate prediction from species distribution models 
(SDMs) is a difficult problem that can be derailed by challenges com‐
mon to ecological studies. First, many SDMs are based on spatially 
restricted sampling that achieves limited coverage of environmental 
gradients, and thus, data do not represent the range of conditions 
inhabited by a species, resulting in poor transferability (i.e. models 
may extrapolate poorly in space and time; Wenger & Olden, 2012; 
Yates et al., 2018). Second, modelled relationships are often sensi‐
tive to the measurement scales of occurrence and environmental 
covariate data (Wheatley & Johnson, 2009; Wiens, 1989) and tools 
for identifying optimal scales are still being developed (Chandler 
& Hepinstall‐Cymerman, 2016; McGarigal, Wan, Zeller, Timm, & 
Cushman, 2016; Miguet, Fahrig, & Lavigne, 2017; Stevens & Conway, 
2019). Third, field observations of animals are often corrupted by 
measurement error due to the failed detection of cryptic organisms 
(Kéry, 2002; MacKenzie et al., 2002), resulting in biased predictions 
if heterogeneity in detectability is not accounted for (Gu & Swihart, 
2004; Guillera‐Arroita et al., 2015; Lahoz‐Monfort, Guillera‐Arroita, 
& Wintle, 2014). Despite these challenges, predictive SDMs remain a 
vital component of many conservation programs (Guisan et al., 2013; 
Scott et al., 2002) and tools for addressing these problems are thus 
necessary.

Prediction is often a fundamental objective of SDM applica‐
tions (Guisan et al., 2013), yet there is no consensus methodology 
for building and selecting predictive SDMs from multi‐scale envi‐
ronmental covariate data (Elith & Leathwick, 2009; McGarigal et al., 
2016). Studies of species–habitat relationships are commonly local 
or regional in nature and assess the effects of environmental attri‐
butes at relatively fine scales, and thus, the interplay of fine‐scale and 
broadscale habitat and human disturbance features affecting spe‐
cies distributions is often poorly understood and not accounted for 
in predictive SDMs (Hobbs, 2003; Jackson & Fahrig, 2015; Wheatley 
& Johnson, 2009). Multi‐scale analyses that seek to identify the 
best spatial scale for modelling species–environment relationships 
are desirable and thus commonly advocated (McGarigal et al., 2016; 
Wiens, 1989). The process of identifying the most appropriate scales 
for measuring species–environment relationships is made even more 
challenging, however, by the large number of hypothesized covari‐
ates that are commonly available to researchers as a result of remote 
sensing and geographic information system technologies (Guisan & 
Thuiller, 2005; Rushton, Ormerod, & Kerby, 2004). Selection of SDM 
structures (both covariates and their scales) for prediction must 
therefore balance the fit of models to existing data with the general‐
ity needed to predict to unsampled locations (Heikkenen, Marmion, 

& Luoto, 2012; Wenger & Olden, 2012; Yates et al., 2018). Modelling 
approaches that optimize model complexity for the explicit purpose 
of spatial prediction are becoming more common (e.g. Wenger & 
Olden, 2012), especially for SDMs that predict the apparent distri‐
bution of organisms (i.e. the mathematical product of occupancy and 
detection probabilities; Kéry, 2011; Lahoz‐Monfort et al., 2014). Yet 
employment of model selection techniques that explicitly optimize 
SDM complexity for predicting new data while also accounting for 
failed detection remains rare (but see Broms, Hooten, & Fitzpatrick, 
2016; Stevens & Conway, 2019).

Despite their technical challenges, predictive SDMs aide con‐
servation decision‐making for many species of management and 
conservation concern, which often includes wetland and riparian 
species. Wetlands and riparian areas are among the most biolog‐
ically productive and diverse ecosystems, yet wetlands are highly 
degraded and threatened globally (Bedford, Leopold, & Gibbs, 2001; 
Brinson & Malvárez, 2002; Tockner & Stanford, 2002). Many spe‐
cies of wetland‐dependent birds have suffered population declines 
and range contractions as a consequence of habitat modification and 
degradation (Conway & Sulzman, 2007; Naugle, Johnson, Estey, & 
Higgins, 2001; Quesnelle, Fahrig, & Lindsay, 2013). Secretive marsh 
birds (marsh birds) are a cryptic group of species that are emergent‐
vegetative wetland obligates, and for which data‐driven SDMs (i.e. 
built using analysis of field data and not simply expert opinion) to 
predict their distributions over broad extents are lacking. Substantial 
concern over marsh bird conservation exists within the USA (Conway 
& Timmermans, 2005; U.S. Fish & Wildlife Service, 2005; U.S. Fish 
& Wildlife Service, 2008), and multiple species are listed as threat‐
ened or endangered at the state, national and international levels 
(COSEWIC, 2002; Diario Oficial de la Federacion, 2002). As such, 
predictive SDMs built using field records of marsh bird occupancy 
are needed to identify existing threats and inform strategic conser‐
vation of these birds over broad spatial extents.

Aside from the obvious reliance of marsh birds on emergent 
wetland vegetation at fine scales, biologists know surprisingly little 
about the key habitat components necessary for marsh bird per‐
sistence, or how their distributions are shaped by anthropogenic 
modification of landscapes and watersheds. Like many other spe‐
cies, studies of marsh bird habitat relationships have been mostly 
local or regional in scope and focused on the effects of fine‐scale 
vegetation (i.e. within 100 m of sampling points) on space use (e.g. 
Budd & Krementz, 2010; Conway, Eddleman, Anderson, & Hanebury, 
1993; Darrah & Krementz, 2008; Darrah & Krementz, 2010; Darrah 
& Krementz, 2011; Lor & Malecki, 2006; Winstead & King, 2006). 
These studies generally lack the contrast of data collected over 
broadscale disturbance gradients needed to predict distributions 
across a species range. As an example, studies have often been con‐
ducted at wetlands containing the necessary emergent vegetation, 
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but also within watersheds that were already heavily modified by 
agriculture, human development, modification of hydrologic regimes 
or all of these factors (e.g. Alexander & Hepp, 2014; Baschuk, Koper, 
Wrubleski, & Goldsborough, 2012; Bolenbaugh, Cooper, Brady, 
Willard, & Krementz, 2012; Darrah & Krementz, 2008; Darrah & 
Krementz, 2010; Darrah & Krementz, 2011; Glisson, Brady, Paulios, 
Jacobi, & Larkin, 2015; Krementz, Willard, Carroll, & Dugger, 2016; 
Valente, King, & Wilson, 2011; Winstead & King, 2006). Wetland 
degradation over broad spatial scales has been hypothesized as 
a driver of population declines for marsh birds (Eddleman, Knopf, 
Meanley, Reid, & Zembal, 1988), but little work has quantified these 
effects. For example, we are unaware of studies that assessed im‐
pacts of hydrologic modification on distributions of marsh birds over 
broad spatial extents (e.g. across a species range), despite the well‐
established influence of hydrologic modification on the structure 
and function of wetland ecosystems (Bedford et al., 2001; Tockner 
& Stanford, 2002) and evidence that water levels can impact fine‐
scale use of habitat by marsh birds (Nadeau & Conway, 2015; Roach 
& Barrett, 2015).

The interplay of fine‐scale and broadscale habitat and distur‐
bance features that shape breeding distributions of marsh birds 
is also poorly understood. Studies have attempted to tease apart 
effects of habitat over a range of spatial scales, but they typically 
measured different attributes at each scale (e.g. Glisson, Brady, et 
al., 2015; Harms & Dinsmore, 2013; Naugle et al., 2001; Pickens & 
King, 2012; Roach & Barrett, 2015; Valente et al., 2011), thus con‐
founding scalar effects with effects of the habitat features them‐
selves (McGarigal et al., 2016; Wheatley & Johnson, 2009). As a 
consequence, prioritizing wetlands for marsh bird conservation over 
broad extents via extrapolation of site‐specific and fine‐scale results 
assumes that results are transferable to other regions and scale up 
linearly to broader spatial extents; these assumptions may not be 
valid and, hence, are unlikely to result in reliable prediction (Miller, 
Turner, Smithwick, Dent, & Stanley, 2004; Roach, Hunter, Nibblelink, 
& Barrett, 2017; Schneider, 2001).

Current information gaps mean that biologists are ill‐equipped 
to identify the best remaining habitat for marsh birds across their 
ranges. Predictive SDMs built using multi‐scale covariate data col‐
lected over existing environmental and disturbance gradients are 
therefore needed to predict marsh bird occupancy across large 
landscapes. Moreover, while marsh bird populations are of signif‐
icant conservation concern within the USA, the status of many 
species is uncertain (i.e. range contracting or expanding). To ad‐
dress these needs, our objectives were to (a) develop predictive 
SDMs for each of 14 priority marsh bird species using data col‐
lected from across their breeding ranges within the continental 
USA, (b) assess the impacts of wetland features and anthropogenic 
disturbances measured over a variety of spatial extents on marsh 
bird distributions and (c) assess empirical evidence for contraction 
of range‐wide breeding distributions for each marsh bird species 
during our 14‐year study. To accomplish these objectives, we built 
optimally predictive multi‐scale SDMs for 14 species of marsh 
birds and selected covariates and their spatial extents to optimize 

out‐of‐sample prediction across the U.S. breeding range of each 
species. We also accounted for spatial and temporal heterogeneity 
in detectability during field sampling through use of hierarchical 
Bayesian occupancy models. Thus, we took a holistic, multispecies 
and multi‐scale approach to building predictive SDMs and identi‐
fying threats to marsh birds. Moreover, our approach for devel‐
oping optimally predictive occupancy models using multi‐scale 
environmental covariate data is generalizable and can be applied 
to any species.

2  | METHODS

2.1 | Study area

We included survey data from 8,457 sites throughout the conti‐
nental USA that were contained within the geographic range of 
14 marsh bird species of conservation concern: pied‐billed grebe 
(Podilymbus podiceps), American bittern (Botaurus lentiginosus), least 
bittern (Ixobrychus exilis), American coot (Fulica americana), com‐
mon gallinule (Gallinula galeata), purple gallinule (Porphyrio martini‐
cus), limpkin (Aramus guarauna), king rail (Rallus elegans), clapper rail 
(Rallus crepitans), Ridgway's rail (Rallus longirostris), sora (Porzana 
carolina), Virginia rail (Rallus limicola), black rail (Laterallus jamaicensis) 
and yellow rail (Coturnicops noveboracensis). We used ranges from 
the Gap Analysis Program (GAP) to identify the geographic range 
extent for each species (Gergely & McKerrow, 2013) and included 
survey points (sampling described below) that fell within the range 
identified by the GAP model for that species. Thus, study areas were 
species‐specific and were effectively the entire U.S. portion of the 
breeding range for each of the 14 species. We also visually inspected 
survey sites where a species was detected outside of its GAP range 
in ArcGIS (ArcMap 10.4.1, ESRI, Redlands, CA), and included these 
extralimital sites if they were near the range boundary or fell within 
plausible gaps of the range for a given species (Figures S1.1–S1.14). 
Our approach for including extralimital sites kept us from excluding 
plausible breeding‐season detections, given the imperfect accuracy 
of GAP range models. However, the number of extralimital sites rela‐
tive to sample sizes used to build SDMs for each species was minis‐
cule (<1% of data points for each species), and thus, inferences were 
primarily determined by surveys at sites within the GAP range for 
each species.

Our focus was on predicting the distribution of a species 
within their breeding range as a function of environmental covari‐
ates, which is distinctly different from identifying the factors that 
determine range boundaries (Brown, Stevens, & Kaufman, 1996). 
Conservation investments for marsh birds, like many other species, 
are limited. This reality provided the impetus for developing models 
using samples located within the breeding range for each species, 
as opposed to using all samples within the continental USA for de‐
veloping species‐specific SDMs (as would be appropriate if studying 
range boundaries). We focused on predicting occupancy within the 
breeding range because necessary components of strategic con‐
servation for these birds include identifying important areas within 
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each species' range and restoration of breeding habitat via spatial 
targeting of management efforts over broad extents.

2.2 | Data collection

Detection–non‐detection data from marsh bird surveys were col‐
lected by >50 government agencies and non‐governmental organi‐
zations from 1999 to 2012 at 8,457 sites throughout the USA (see 
Appendix S1). Field surveys were completed during the breeding 
season (1 March–15 July) following the North American standard‐
ized marsh bird monitoring protocol (Conway, 2011). Most surveys 
included both a passive and a call‐broadcast segment. Broadcasting 
marsh bird calls through a speaker increases detection probabilities 
by eliciting vocal responses from birds occupying the area that oth‐
erwise are likely to go undetected (Conway & Gibbs, 2005; Conway 
& Nadeau, 2010). Field surveyors typically visited sites repeatedly 
over a breeding season. While field sampling was spatially extensive 
and included a large number of locations for each species, most of 
these sites were sampled for ≤2 years during the study (Table S1.1) 
and the frequency of sampling varied because of the large number 
of organizations involved in data collection. Not all of the 8,457 sites 
were located inside the range of each species, and thus, the num‐
ber of sites included in analyses varied among the 14 species (903–
8,457; Table S1.1; Figures S1.1–S1.14). Also, analyses for six species 
used data collected over a shorter temporal extent (10–13 years) 
because some years did not include sampling locations within all 14 
species' ranges (Table S1.1).

For each visit at a given site within each year, surveyors recorded 
detection for each species if it was detected during the visit and re‐
corded non‐detection if it was not detected during the visit. Replicate 
visits within each year allowed estimation of occupancy–habitat re‐
lationships while also explicitly accounting for failed detections that 
commonly occur during field surveys (Kéry, 2002; MacKenzie et al., 
2006). Because marsh bird detection probabilities are influenced by 
a number of factors, both within and beyond the control of inves‐
tigators, we assessed four survey‐level attributes recorded during 
field sampling as hypothesized covariates in species‐specific detec‐
tion models (Conway & Gibbs, 2011; Conway, Sulzman, & Raulston, 
2004; Nadeau, Conway, Smith, & Lewis, 2008): (a) time of day at the 
start of each survey, (b) Julian date, (c) duration of the call‐broadcast 
survey and (d) a binary variable indicating whether or not calls for 
the species of interest were included in the call‐broadcast segment 
of the survey.

We obtained spatial data to build SDMs for marsh birds as a 
function of wetland habitat and anthropogenic disturbances mea‐
sured over a variety of spatial extents (using the focal‐patch‐land‐
scape design described by Brennan, Bender, Contreras, & Fahrig, 
2002; covariate data and spatial analyses described in Appendix 
S2). We used data from the National Wetland Inventory (NWI) to 
characterize attributes of wetlands, and data from the National GAP 
Land Cover Dataset, version 2 (GAP) to describe anthropogenic 
disturbances surrounding field sites. We considered 21 wetland 
covariates representing combinations of NWI wetland system and 

subsystem (wetland system–subsystem), wetland classes, water re‐
gimes and special modifiers as variables to predict the distribution 
of marsh birds (Tables S2.1–S2.3). We also considered nine GAP land 
cover variables related to anthropogenic disturbance (Table S2.4): 
five variables that described human development (developed open‐
space, low‐intensity development, medium‐intensity development, 
high‐intensity development and all development land cover types 
combined [development]), three variables that described modifica‐
tion by agriculture (cultivated‐cropland cover, pasture–hay cover 
and cultivated‐cropland and pasture–hay combined [agriculture]) 
and one variable that described cover of non‐native vegetation 
(non‐native cover). Importantly, all of the NWI and GAP variables 
(Appendix S2) measured attributes of wetlands (e.g. water levels and 
flooding regimes, vegetation coverage) and anthropogenic distur‐
bance (e.g. human development and agriculture) that are known to 
directly affect the structure and function of wetland ecosystems, 
and hence the distribution of organisms within wetlands (Bedford et 
al., 2001; Tockner & Stanford, 2002; Zelder & Kercher, 2005). Thus, 
all covariates considered were ecologically plausible factors affect‐
ing the distribution of breeding marsh birds, despite the fact that the 
impacts of many of these variables on distribution of marsh birds 
over broad extents has received limited study.

Relationships between an animal's use of an area and the attri‐
butes of that area are often sensitive to the observational scales 
at which data are collected (Hobbs, 2003; Levin, 1992; Mayor, 
Schneider, Schaefer, & Mahoney, 2009; Wiens, 1989). Thus, we eval‐
uated occupancy–covariate relationships at multiple spatial extents 
surrounding each site. We measured the amount of cover for each 
wetland and disturbance variable at three spatial extents (100‐m, 
224‐m and 500‐m radii buffers) using the focal‐patch‐landscape 
design (Brennan et al., 2002) and circular moving‐window analyses. 
Attributes of each site were described at a spatial grain of 30 m and 
assigned proportional coverage values for each covariate measured 
over each of the three extents. Multi‐scale analyses such as these 
can result in overlap of spatial‐extent buffers, resulting in broad‐
extent covariate measurements around neighbouring sites that are 
similar in value (Zuckerberg et al., 2012). This similarity may cause a 
reduction in covariate variance as the measurement scales increase, 
which some have suggested may result in analyses favouring small‐
scale covariate measurements as optimal (Lipsey, Naugle, Nowak, & 
Lukacs, 2017). We did observe small reductions in covariate vari‐
ance with increased measurement extent (i.e. from 100‐m to 500‐m 
buffers; Table S1.2), but this did not result in favouring of fine‐scale 
habitat measurements for predictor variables in our analyses (see 
Section 2.3 and Section 3 below).

In addition to the local variables, we also measured 10 broad‐
scale disturbance variables at multiple levels within watersheds sur‐
rounding each site (Table S2.5). We used one variable describing the 
number of current and former mines and mineral processing plants 
to characterize the effects of mining on water quality, one variable 
describing the number of pollutant release and transfer reporting 
facilities to characterize the possibility for contamination, and six 
hydrologic‐modification variables related to the storage capacity 
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of water by upstream dams, as well as the magnitude of restriction 
and interruption of natural flow regimes by dams for each site (see 
Appendix S2). We also measured the two composite GAP variables 
for development and agriculture (described above) to characterize 
anthropogenic disturbance within a watershed. Moreover, each of 
these variables was measured at two spatial levels: catchments and 
networks. Each catchment contained the drainage area for a single 
surface water reach. However, catchments receive water from up‐
stream sources, and thus, wetlands within a catchment may be influ‐
enced by conditions upstream within a watershed. Sampling points 
were thus also contained within a broader watershed network that 
also included upstream wetlands (hereafter the network) to ac‐
count for upstream dynamics. Disturbance variables measured at 
the catchment and network levels were described at a spatial grain 
of 30 m (i.e. similar to local variables but calculated over broader 
extents).

2.3 | Statistical analysis

We used a hierarchical formulation of the multiseason occupancy 
model (Mackenzie et al., 2006) to predict the probability of occu‐
pancy as a function of wetland and disturbance variables. We built 
models to predict net occupancy probability (ψ) as a function of 
covariates (p. 312, Royle & Dorazio, 2008) and were not interested 
in modelling local extinction and colonization dynamics explicitly. 
Hence, we modelled occupancy and detection processes as:

This parameterization assumed the true occupancy state (z) for 
each site (i) and year (t) was a random variable arising from a sto‐
chastic Bernoulli process, where yi,j,t represents the detection (1) or 
non‐detection (0) event at visit j, whose distribution is also Bernoulli 
but governed by the occupancy state and probability of detection on 
that survey occasion (pi,j,t). As such, the temporal grain of occupancy 
was a single breeding season, whereas the temporal extent was the 
entire study duration for that particular species (10–14 years). We 
did not consider temporally dynamic occupancy models where zi,t+1 
was dependent in a Markovian fashion to zi,t because sites were sam‐
pled inconsistently across years, and most sites were sampled for 
only 1–2 years (Table S1.1). Thus, we did not believe our spatially ex‐
tensive data were adequate for temporally dynamic models of marsh 
bird occupancy.

This statistical model treats the true occupancy at a site (i.e. 
present or absent) as closed and unchanging within a single breed‐
ing season, but assumes the status can change among seasons. 
In addition to modelling the relationship between occupancy and 
habitat, occupancy models explicitly model the process of detec‐
tion during field surveys. Ignoring failed detection during pres‐
ence–absence surveys results in mathematical confounding of 
detection and occupancy probabilities, and the resulting models 

predict the joint probability of where a species both occurs and 
is likely to be found during sampling (i.e. apparent distribution; 
Guillera‐Arroita, Lahoz‐Monfort, MacKenzie, Wintle, & McCarthy, 
2014; Kéry, 2011; Lahoz‐Monfort et al., 2014). This problem of 
confounding detection with occupancy is particularly serious for 
marsh birds because they have notoriously low detection probabil‐
ity (Conway & Gibbs, 2011). Thus, we built hierarchical occupancy 
models that allow for mathematical separation of occupancy and 
detection probabilities (Guillera‐Arroita et al., 2015) to predict the 
true distribution of marsh birds without making two restrictive but 
commonly made assumptions that are not valid for marsh birds 
and many other animals: (a) that occupancy status did not change 
over the study duration, and (b) that detection probability did not 
change among surveys.

We used a Bayesian statistical paradigm for all model fitting 
and inferences (model fitting details provided in Appendix S3) and 
used model selection to optimize the model structure and spa‐
tial extent of covariates for prediction. We randomly split sites 
into training and testing data for each species, where training 
data were used to fit models and estimate posterior distributions 
of parameters, and testing data were held out to assess predic‐
tive abilities for each model. We used 60% and 40% of sites for 
the training (542–5074 sites, depending on species) and testing 
(361–3385 sites, depending on species) data, respectively, where 
all data at a site were included in the set to which a given site 
was assigned (Table S1.1). All model ranking was conducted using 
the logarithmic scoring rule (hereafter log scoring rule; Broms 
et al., 2016; Gelman, Hwang, & Vehtari, 2014; Hooten & Hobbs, 
2015), where log scores for each model were calculated from the 
posterior predictive density using the testing data set (Stevens & 
Conway, 2019; Appendix S3). This was equivalent to selecting a 
model based on its ability to maximize the joint probability of ob‐
serving the testing data (i.e. log‐likelihood evaluated at the testing 
data for every combination of model parameters contained within 
the posterior distributions; Gelman et al., 2014; Hooten & Hobbs, 
2015), which consisted of samples from across the entire U.S. 
breeding range of each species.

Selecting models based on fit of their predictions to out‐of‐
sample data is a key component of predictive model selection 
(Hooten & Hobbs, 2015; Houlahan, McKinney, Anderson, & 
McGill, 2017), and our approach to model selection optimized 
spatial prediction across the breeding range of each species. This 
approach regulated model complexity explicitly using out‐of‐sam‐
ple predictive performance, thus naturally alleviating the problem 
of degraded predictive performance through overfitting of train‐
ing data that is common to many SDMs (Heikkenen et al., 2012; 
Wenger & Olden, 2012). As such, this approach to model selection 
is conceptually different than selecting the appropriate level of 
complexity based only on within‐sample fit to training data (i.e. 
selection via a model's explanatory ability), or by attempting to 
balance fit and complexity using information criteria, which can 
result in overparameterized models with degraded out‐of‐sample 

zi,t∼Bernoulli
(

�i,t

)

yi,j,t∼Bernoulli
(

zi,tpi,j,t
)
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predictive performance (Broms et al., 2016; Hooten & Hobbs, 
2015; Stevens & Conway, 2019). Nonetheless, we also sought to 
make ecological inferences about effects of covariates identified 
for their ability to predict marsh bird occupancy, as is common in 
ecological studies when prediction is the goal (Broms et al., 2016). 
Such inferences are reasonable given the occupancy modelling 
framework (that separates detection and occupancy probabilities) 
and the suite of ecologically relevant covariates that we used. 
Moreover, prior to including occupancy covariates in models, we 
selected a detection model for each species based on its log scores 
from the intercept‐only occupancy model (see Appendix S4) and 
then used the best detection model for examining covariates that 
affected occupancy.

We identified optimal multi‐scale SDMs for predicting range‐
wide occupancy for each marsh bird species. We first conducted 
scale optimizations for each covariate by fitting univariate occu‐
pancy models for each local variable at all three extents (100, 224 
and 500 m) and then selecting the optimal extent for each variable 
(see Appendix S5). Next, we identified the best scale‐optimized 

habitat covariate within each of the four groups of variables 
representing wetland types and disturbance (wetland system–
subsystem, class, water regime and special modifiers and GAP 
disturbance variables). This resulted in four scale‐optimized co‐
variates that were used to create a local‐habitat model set for 
each species. Specifically, the model set consisted of all additive 
combinations of each scale‐optimized covariate, for a total of 15 
local‐habitat models, and the best habitat model was selected 
from this set for each species. In addition, we identified the best 
broadscale disturbance variable by fitting univariate models for 
each covariate at both the catchment and network levels and 
identifying the best variable‐level combination for each species. 
We then created a final model set that included the best local‐
habitat model from the prior step plus the best catchment or net‐
work level disturbance variable, as well as hypothesized temporal 
trends in occupancy over the study duration that considered lin‐
ear, quadratic and cubic trends (Appendix S5), and selected the 
best model for each species. Importantly, habitat and disturbance 
covariate data sets were not changing over the study duration (i.e. 

Species Top model Bayes‐P

Pied‐billed grebe − riv.lp(224) + sc.shrub(500) + art.flood(500) + dev.
hi(500) − ag(c) + trend − trend2

0.48

American bittern − riv.lp(500) − shore(500) + seas.flood(500) + dev.
os(100) + r.storfluc(c) + trend − trend2

0.87

Least bittern + palus(224) − exc(100) − ag(100) − maxstor(c) + trend 
− trend2

0.82

American coot + palus(500) − sc.shrub(500) + semi.flood(224) − 
dev(500) − dev(n) − trend + trend2

0.37

Common gallinule + palus(100) − art.flood(224) + cult.crop(500) − ag(n) 
+ trend − trend2

0.62

Purple gallinule − sat(100) + dev(c) − trend − trend2 0.32

Limpkin − l.litt(100) + exc(100) + ag(100) + dev(n) 0.50

King rail + sc.shrub(224) + per.flood(500) − dev.os(224) − ag(n) 0.44

Clapper rail + exc(100) − dev.li(500) 0.50

Ridgway's rail + riv.up(100) + sc.shrub(224) − r.storfluc(n) + trend 
− trend2

0.42

Sora − sc.shrub(500) + di(100) − nflowrest(c) + trend 
− trend2

0.02

Virginia rail + l.litt(500) + exc(500) − dev.hi(100) − flowint(n) 0.47

Black rail + sc.shrub(500) − art.flood(500) − dev.li(100) − trend 0.34

Yellow rail + shore(224) − di(500) − ag(500) + ag(c) 0.41

Occupancy model covariates are artificial flooding (art.flood), diked–impounded (di), excavated 
(exc), lacustrine‐littoral (l.litt), palustrine (palus), permanently flooded (per.flood), riverine lower‐
perennial (riv.lp), riverine upper‐perennial (riv.up), saturated (sat), scrub–shrub (sc.shrub), seasonal 
flooding (seas.flood), semi‐permanently flooded (semi.flood), shoreline (shore), agriculture (ag), cul‐
tivated croplands (cult.crop), developed (dev), high‐intensity development (dev.hi), low‐intensity de‐
velopment (dev.li), developed open‐space (dev.os), watershed flow interruption (flowint), maximum 
water storage capacity in watershed (maxstor), normal water flow restriction (nflowrest), relative 
storage fluctuation (r.storfluc) and time trend across the study duration (trend). Direction of effects 
is indicated by sign (±), and spatial extents are indicated parenthetically and include 100, 224 and 
500 m for local‐habitat variables, and catchment (c) and network (n) for watershed‐level distur‐
bance variables. Goodness‐of‐fit of each model to the marsh bird field‐sampling data is indicated 
by the Bayesian p‐value scores (Bayes‐P), where scores close to zero or one indicate lack of fit.

TA B L E  1   The most supported 
hierarchical occupancy model predicting 
range‐wide breeding distribution within 
the continental USA for each of the 14 
marsh bird species
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they were temporally static), and thus serve to aide spatial pre‐
diction of occupancy rather than temporal assessment of species 
persistence at a site. This limitation is due to the lack of available 
time‐specific measurements of wetland and disturbance condi‐
tions over the study duration at the extent of the continental USA, 
which is a common limitation of SDMs developed over very broad 
spatial extents (Elith & Franklin, 2013). In summary, we used a 
multistage Bayesian model selection procedure to identify which 
scale‐optimized covariates were included in the final model set 
for each species, and selected the top model from this set as the 
model that was best at predicting out‐of‐sample data (see Figure 
S1.15 for visual depiction of process). Lastly, we refit top mod‐
els to the entire data set for each species (combining training and 
testing data; Hooten & Hobbs, 2015) to generate final parameter 
estimates and to evaluate goodness‐of‐fit by generating Bayesian 
P‐values based on the sum of absolute residuals (pgs. 246–249 in 
Kéry, 2010).

3  | RESULTS

Optimally predictive models included wetland and human distur‐
bance variables measured over all spatial extents (100, 224, 500 m) 
and levels (catchment, network), and the variables differed among 
species (Table 1). Local disturbance variables (measured at 100‐m, 
224‐m or 500‐m extents) improved predictive performance for all 
species, and watershed‐level disturbances (measured over catch‐
ments or networks) further improved performance for 12 species 
(Tables 1 and S5.1–S5.28). Moreover, top models demonstrated that 
marsh birds had species‐specific detection processes during sur‐
veys, where the relationships between detection and the detection 

covariates varied among species (Tables S4.1–S4.16). The relation‐
ships between detection and both Julian date and time of day were 
heterogeneous among species and often nonlinear, where quadratic 
effects for ≥1 of these were found for 10 species (Table S4.2). In ad‐
dition, models for eight species included interactions between Julian 
date and time of day, and thus, joint, nonlinear effects of covariates 
on detection were common but species‐specific. Top models fit the 
data well for 13 species (all except sora; Table 1).

Factors affecting occupancy varied among species, but some 
commonalities emerged (Table 1, Figures 1‒4). Natural wetland veg‐
etation typically had positive effects on occupancy that were mani‐
fested at intermediate extents (224 m or 500 m; Figure 1a). Natural 
water regimes (Figure 2a) and palustrine wetlands (Table 1) also had 
positive effects at intermediate extents (224 m or 500 m) for most 
species. In contrast, human disturbance metrics (development, 
agriculture, artificial flooding, diking and hydrologic modification) 
measured over a range of extents often had negative or neutral 
effects on occupancy (95% credible interval overlapped zero) 
when present in top models (Tables 1 and S5.1–S5.14; Figures 1‒3). 
Watershed‐level hydrologic disturbance variables also typically 
had negative effects (Figure 3a), and agriculture within a water‐
shed had either negative (common gallinule and king rail) or neu‐
tral effects (pied‐billed grebe and yellow rail; Figure 3b). However, 
some exceptions to these patterns did emerge (Figures 1‒3). For 
example, the effect of a natural water regime (saturated wetlands) 
on purple gallinule was negative, and some water regimes created 
by human modification (e.g. excavated) had positive and nega‐
tive effects on occupancy, depending on the species (Figure 2b). 
Similarly, agriculture had positive effects on occupancy for limpkin 
and common gallinule within 100 m and 500 m, and development 
within 100 m had a positive effect on American bittern occupancy. 

F I G U R E  1   Effects of natural wetland vegetation (a), agriculture (b) and human development (c) on breeding‐season occupancy (ψ) within 
the continental USA for marsh birds. Solid lines represent expected occupancy probabilities when all additional covariates were held at their 
median values, and colours represent individual species. Species affected by natural vegetation (scrub–shrub wetland; a) were pied‐billed 
grebe (light brown), American coot (grey), king rail (light green), Ridgway's rail (light blue), sora (dark blue) and black rail (black). Species 
affected by agriculture (b) were least bittern (red), common gallinule (orange), limpkin (magenta) and yellow rail (yellow). Species affected 
by human development (c) were pied‐billed grebe (light brown, linear decreasing), American bittern (dark green), American coot (grey), king 
rail (light green), clapper rail (dark brown, nonlinear decreasing), Virginia rail (dark red) and black rail (black). Specific covariates and scales of 
effect for each (100, 224 or 500 m) are provided in Table 1
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In addition, watershed‐level hydrologic modification had positive 
effects on American bittern occupancy (relative storage fluctua‐
tion at the catchment level; Figure 3a). Human development at the 
watershed level had positive, negative or neutral effects depending 
on the species (Figure 3c): American coot (−), purple gallinule (+) and 
limpkin (neutral). Moreover, inclusion of local‐habitat, local‐distur‐
bance and watershed‐level disturbance variables resulted in clear 
predictive gains relative to null, intercept‐only occupancy models 
(Figure S5.1), despite small gains for some species (limpkin, yellow 
rail). Inclusion of local‐disturbance variables (i.e. GAP variables at 
100, 224 or 500 m) and watershed‐level disturbance variables also 

resulted in predictive gains over wetland habitat variables alone 
(Figure S5.1), but small predictive gains were observed for some 
species (pied‐billed grebe, sora, limpkin, Ridgway's rail, yellow rail). 
Disturbance variables added only modest predictive gains for four 
of these five species (excluding Ridgeway's rail) as the disturbance 
coefficients included in the top model were estimated imprecisely 
(95% credible intervals overlapped zero; Tables S5.1–S5.14). Lastly, 
partial effects plots for all covariates in top models for each species 
are provided in Appendix S5 (Figures S5.2–S5.15).

Distributions of marsh birds were also affected by wetland 
and disturbance variables at all five spatial extents (Tables 1 and 

F I G U R E  2   Effects of natural water regimes (a) and human‐modified water regimes (b) on breeding‐season occupancy (ψ) within the 
continental USA for marsh birds. Solid lines represent expected occupancy probabilities when all additional covariates were held at their 
median values, and colours represent individual species. Species affected by natural water regimes (a) were American bittern (dark green), 
American coot (grey), purple gallinule (purple) and king rail (light green). Species affected by human‐modified water regimes (b) were least 
bittern (red, linear decreasing), common gallinule (orange), limpkin (magenta), clapper rail (dark brown), sora (dark blue), Virginia rail (dark red, 
linear increasing), black rail (black) and yellow rail (yellow). Specific covariates and scales of effect for each (100, 224 or 500 m) are provided 
in Table 1

F I G U R E  3   Effects of watershed‐level disturbance associated with modification of hydrology (a), agriculture (b) and human development 
(c) on breeding‐season occupancy (ψ) within the continental USA for marsh birds. Solid lines represent expected occupancy probabilities 
given all additional covariates were held at their median values, and colours represent individual species. Species affected by modification of 
hydrology (a) were American bittern (dark green), least bittern (red, linear decreasing), Ridgway's rail (light blue, nonlinear decreasing), sora 
(dark blue, linear decreasing) and Virginia rail (dark red, nonlinear decreasing). Species affected by agriculture (b) were pied‐billed grebe (light 
brown), common gallinule (orange), king rail (light green) and yellow rail (yellow). Species affected by human development (c) were American 
coot (grey), limpkin (magenta) and purple gallinule (purple). Values along the x‐axis represent standardized units for each hydrologic‐
modification variable (a). Specific covariates and level of effects for each (catchment or network) are provided in Table 1
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S5.1–S5.56), and all species were affected by features at >1 extent. 
Occupancy of pied‐billed grebe, American bittern, American coot, 
Virginia rail, black rail and yellow rail was most affected by local‐
habitat features at the broadest spatial extent (500 m), whereas 
occupancy of least bittern, limpkin and purple gallinule was 
most often affected by habitat features at fine extents (100 m). 
However, most species responded to one or more attributes at all 
three local scales, and the patterns varied among species (Table 1). 
Importantly, temporal trends in occupancy were included in top 
models for nine species, and often included nonlinear trends over 
the study duration (Table 1). Occupancy probability decreased 
over the 14‐year study duration for American bitterns, American 
coots, purple gallinules, Ridgway's rails and black rails, whereas 
occupancy probability increased over the study for common gal‐
linules, least bitterns, pied‐billed grebes and soras (Figure 4; see 
Appendix S5). Many of these species also had quadratic occupancy 
trends over time, with peaks during the mid‐2000s and declines 
towards the end of the study, whereas purple gallinules showed 
a nonlinear decreasing occupancy probability over time (i.e. rate 
of decline became stronger; Figure 4). Temporal trends were in‐
cluded in competitive models for the other five species (Tables 
S5.15–S5.28), but occupancy changed little over time for these 
species, except for slight negative trends for king rails and Virginia 
rails (Figures S5.16–S5.20).

4  | DISCUSSION

We built SDMs for 14 species of marsh birds that incorporate wet‐
land features and anthropogenic disturbances while also addressing 
challenges that hinder predictive performance of many SDMs: (1) 
regulation of model complexity based on out‐of‐sample predictive 
ability, (2) range‐wide sampling over a broad range of conditions, (3) 
multi‐scale analyses with spatial scales optimized for prediction and 
(4) direct modelling of heterogeneity in species‐specific detectability. 

These four issues have often been addressed in isolation or in pairs 
(e.g. Broms et al., 2016, integrated #1 and #4 above in a multispe‐
cies model, but not #2 or #3), yet we are unaware of another study 
that integrated all of these elements for a wide‐ranging animal at a 
continental scale, in particular using occupancy models that include 
detection error. Our process can be used with Bayesian SDMs for 
any species to optimize model complexity and the ecological neigh‐
bourhood size (Addicott et al., 1987) of species–environment rela‐
tionships for prediction. Moreover, this approach is conceptually and 
empirically different from the common tactic of selecting models 
via within‐sample data followed by post hoc predictive validation 
(Hooten & Hobbs, 2015; Houlahan et al., 2017; Stevens & Conway, 
2019).

Our models are also among the first SDMs built for marsh birds 
at the extent of their entire breeding ranges using data collected in 
the field (as opposed to expert opinion; see also Glisson, Conway, 
Nadeau, Borgmann, & Laxson, 2015). We provide evidence that 
marsh bird occupancy is affected by landscape modification, both 
locally and within watersheds. Not all localities within a geographic 
range are equally suitable for a given species, and our models can be 
used to deduce predictions of occupancy probability as a function of 
habitat and disturbance variables that improves upon binary range 
models that currently exist to support conservation of these birds 
over large extents (e.g. GAP models). As such, our models can assist 
decision‐makers in focusing limited resources to inform conserva‐
tion and monitoring efforts for marsh birds. We also demonstrate 
the complexity of species‐specific detection error that occurs during 
field sampling, which included nonlinear effects and covariate inter‐
actions. Accounting for failed detection and its contributing factors 
is thus essential to avoid biased predictions when building SDMs for 
wetland‐dependent birds.

We created SDMs to maximize spatial predictive ability across 
the range of each marsh bird species. Inadequate spatial transfer‐
ability is a common problem for SDMs that limits a model's predic‐
tive ability in new areas where data were not collected; a problem 

F I G U R E  4   Time trends for breeding‐season occupancy (ψ) within the continental USA for each of the nine species of marsh birds 
whose optimal model contained a time trend. Lines represent expected occupancy probabilities given all additional covariates were held at 
their median values, and colours indicate species with increased (a) or decreased (b) ψ over the study duration (1999–2012). Species with 
increased ψ were pied‐billed grebe (light brown), least bittern (red), common gallinule (orange) and sora (dark blue). Species with decreased ψ 
were American bittern (dark green), American coot (grey), purple gallinule (purple), Ridgway's rail (light blue) and black rail (black)
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that occurs when models are generated from sampling a subset of 
the environmental conditions over which a species is found (Elith 
& Leathwick, 2009; Elith & Franklin, 2013). When this occurs, pre‐
diction involves extrapolation in both geographic and environmental 
space and commonly results in poor performance despite metrics 
that may imply good fit of the model to training data (Heikkenen 
et al., 2012; Sequeira et al., 2016; Yates et al., 2018). We did not 
test spatial transferability by using regionally distinct training and 
testing data (Wenger & Olden, 2012), as our goal was not to use 
data from one subregion to predict occupancy in another. Instead, 
we selected models based explicitly on their predictive performance 
using out‐of‐sample data collected from across each species' range 
within the USA. The range‐wide extent of field sampling meant that 
these analyses were conducted, by design, to minimize problems of 
spatial transferability within the breeding range by selecting models 
to optimize fit of predictions to out‐of‐sample data collected from 
across that range. Consequently, resulting models have the best 
spatial predictive capacity within the constraints of the covariates 
available over such broad extents, and predictions that are expected 
to result in interpolation when applied broadly, rather than extrapo‐
lation to novel conditions.

In addition, we identified the optimal spatial extents for a suite 
of species–environment relationships used to predict marsh bird 
occupancy. Ecological theory and empirical studies demonstrate 
that animal responses to environmental conditions are sensitive to 
scales of observation (Wheatley & Johnson, 2009; Wiens, 1989) and 
that local space use is often affected by conditions operating over 
broader spatial extents (Addicott et al., 1987; McGarigal et al., 2016). 
We selected optimally predictive spatial extents for wetland and 
disturbance covariates, and then multi‐scale models that included 
covariates at their optimal extents. Species responded individual‐
istically to wetland conditions and disturbances across numerous 
scales, including conditions within focal patches (100, 224 or 500 m) 
and entire watersheds. Each species also responded to conditions at 
more than one scale, and thus, arbitrary selection of a single scale 
would have resulted in suboptimal prediction. These results highlight 
the benefits of a multi‐scale approach to characterize habitat suit‐
ability, as opposed to the common approaches of measuring habitat 
relationships only at fine spatial scales or confounding changes in 
measurement extent with changes to the variables measured. More 
specifically, our results imply that the emphasis on effects of fine‐
scale vegetation on breeding marsh birds has likely missed other im‐
portant drivers of occupancy across broad spatial domains.

Our models provide an important step towards prediction, and 
ultimately conservation, of areas with suitable breeding habitat 
for marsh birds across the continental USA. Existing predictions of 
marsh bird habitat are primarily based on expert opinion and col‐
lections of fine‐scale and regionally focused studies (Bolenbaugh 
et al., 2012; Darrah & Krementz, 2008; Roach & Barrett, 2015; 
Roach et al., 2017). Prediction of suitable habitat over broad ex‐
tents has thus commonly relied on spatial–temporal extrapola‐
tion and assumed that fine‐scale habitat relationships scale up 
linearly across a landscape and that region‐specific models are 

transferable. Not surprisingly, such predictions of suitable habi‐
tat have proven difficult to validate with field data (Bolenbaugh 
et al., 2012; Roach et al., 2017). In contrast, we used detection–
non‐detection data collected throughout each species' breeding 
range to build predictive SDMs with their structure explicitly se‐
lected to optimize the range‐wide spatial predictive capabilities 
for each species. These models provide a rigorous foundation for 
predicting habitat suitability using existing spatial covariate data 
measured at their appropriate extents, avoiding cross‐scale ex‐
trapolation and providing more reliable predictions than models 
based solely on wetland attributes. Moreover, the covariates we 
used for modelling occupancy represent attributes known to af‐
fect the structure and function of wetland ecosystems. Thus, the 
interpretation of ecological effects on breeding‐season occupancy 
for marsh birds is appropriate even though our primary emphasis 
was spatial prediction.

We provide evidence that anthropogenic disturbance, in a vari‐
ety of forms and over a variety of extents, affects habitat suitabil‐
ity for marsh birds. Agriculture and urban development are among 
the biggest threats to wetland ecosystems globally, with direct 
effects from conversion of wetlands for other uses, but also de‐
grading effects on remaining wetlands via fragmentation, changes 
to hydrology, increased nutrient loads and changes to water chem‐
istry (Bedford et al., 2001; Tockner & Stanford, 2002; Zelder & 
Kercher, 2005). These changes have resulted in substantial effects 
on the distribution of plant and animal species that reside within 
wetlands. Agriculture may benefit wetland birds in some regions 
or circumstances (e.g. flooded rice fields in the southeastern USA; 
Czech & Parsons, 2002; Pierluissi & King, 2008), yet loss of wet‐
lands to agriculture and development have been implicated as a 
threat to marsh birds (Glisson, Brady, et al., 2015; Naugle et al., 
2001). Although our results imply the effects of individual distur‐
bances were species‐specific, they also provide direct evidence 
of anthropogenic impacts on the breeding distributions of marsh 
birds that have been speculated for 30 years (Eddleman et al., 
1988).

Modification of hydrology, both locally and within the larger 
watersheds where birds reside, affects the breeding distributions 
of marsh birds. Dams, diking, excavation and other physical mod‐
ifications alter water flows, water depths and seasonality of fluc‐
tuating water levels within a watershed and, in turn, affect soil 
saturation, water chemistry, water temperatures and sediment 
dynamics that drive distributions of plants and animals (Bednarek, 
2001; Tockner & Stanford, 2002; Zelder & Kercher, 2005). Water 
depth and its fluctuation can directly affect wetland birds in a vari‐
ety of ways, including through accessibility to food, nesting habitat 
and escape cover (Ma, Cai, Li, & Chen, 2010; Nadeau & Conway, 
2015), and consequently, water depth is a reported driver of marsh 
bird habitat use (Flores & Eddleman, 1995; Harms & Dinsmore, 
2013; Krementz et al., 2016; Lor & Malecki, 2006). Lack of natural 
water fluctuations can facilitate wetland succession by eliminating 
seasonal disturbances (e.g. high flows), which in turn can affect the 
composition and structure of wetlands to the detriment of marsh 
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birds (Conway, Nadeau, & Piest, 2010; Winstead & King, 2006). 
Thus, the extent of effects caused by hydrologic modifications 
may reach beyond those sampled by many field studies, extending 
far downstream of the source(s). Our findings are novel because 
we demonstrate that hydrologic changes can affect marsh birds 
via processes that operate at a variety of spatial scales, including 
local effects as well as effects that extend to the level of water‐
sheds. As such, we demonstrate that hydrologic modification has 
multi‐scale, watershed‐level and species‐specific effects on marsh 
bird occupancy.

Most of our results also corroborate those of previous studies 
on the distribution and abundance of marsh birds. For example, we 
expected natural vegetation and water regimes to be beneficial be‐
cause vegetation characteristics, water depth and flow affect the 
behaviour and distribution of breeding marsh birds (Alexander & 
Hepp, 2014; Baschuk et al., 2012; Conway & Sulzman, 2007; Darrah 
& Krementz, 2008, 2011). For example, the interplay of vegetation 
and water depth can affect the distribution and abundance of prey 
species (Baschuk et al., 2012), and consequently marsh bird for‐
aging behaviour. Conway and Sulzman (2007) reported that black 
rails avoided deeper and open water but were commonly located in 
shallow water (≤2 cm) near transitional plant communities between 
wetlands and uplands. Natural flow regimes can maintain early 
successional wetlands beneficial to marsh birds, whereas artificial 
stabilization of flows can change the structure and composition of 
important vegetation communities (Conway et al., 2010; Winstead 
& King, 2006). Eddleman et al. (1988) suggested that marsh bird con‐
servation should be prioritized at natural wetlands with a high degree 
of elevation diversity (i.e. a variety of water depths). Glisson, Brady, 
et al. (2015) provided direct evidence that marsh bird occupancy in 
Wisconsin may be greater in natural than restored wetlands, and our 
results suggest that both natural vegetation and flow regimes are 
often beneficial for breeding marsh birds.

Many of the effects estimated from our models are congruent 
with existing knowledge of marsh bird ecology, yet some results 
were not anticipated and warrant further investigation. For exam‐
ple, we found positive effects of scrub–shrub wetlands measured 
over a variety of spatial extents on five species, with strong effects 
on occupancy for three of those species (pied‐billed grebe, king rail 
and black rail). Effects of scrub–shrub wetlands on marsh birds re‐
ported by previous studies are highly inconsistent. Many studies 
have aggregated scrub–shrub and forested wetland into one vari‐
able representing woody vegetation, making it impossible to isolate 
the effects of scrub–shrub wetlands (forest is poor quality habitat 
for marsh birds; Budd & Krementz, 2010). Studies have variously re‐
ported negative effects (Darrah & Krementz, 2010), no effects (Budd 
& Krementz, 2010) and positive effects (Krementz et al., 2016) of 
this composite woody vegetation variable on marsh birds. Moreover, 
Conway and Sulzman (2007) reported black rail occurrence was pos‐
itively correlated with mixed shrub vegetation, and Eddleman et al. 
(1988) reported that multiple rail species utilize shrubby wetlands 
during the breeding season. At a minimum, our results call into ques‐
tion the practice of aggregating scrub–shrub and forested wetlands 

when assessing multi‐scale habitat relationships for marsh birds. Our 
findings also suggest a more refined understanding of the relation‐
ships between marsh bird use of wetlands and shrub composition 
measured over a range of spatial scales is needed.

Perhaps more surprising are the positive relationships we doc‐
umented between human modification of habitats and occupancy 
for several marsh bird species. For example, areas with modified 
water regimes, such as diked and excavated wetlands, were benefi‐
cial for four species (clapper rail, limpkin, sora, Virginia rail). Others 
have suggested these practices may be detrimental to marsh birds, 
particularly in coastal areas (Ma et al., 2010). We interpret these 
relationships as providing evidence that man‐made and managed 
wetlands may provide important habitat for these species, and many 
wetlands managed specifically for wetland birds can be categorized 
as diked and excavated (e.g. wetlands on National Wildlife Refuge 
System lands). We also suspect these variables may be acting as 
proxies for wetland attributes related to the depth and distribution 
of water during the breeding season in created wetlands, and its 
subsequent effects on foraging behaviour, nest site selection and 
habitat use (Eddleman et al., 1988; Legare & Eddleman, 2001; Ma 
et al., 2010). Less intuitive are the positive fine‐scale relationships 
between occupancy and agriculture (limpkin, common gallinule), 
and the fine‐scale (American bittern) and broadscale (purple galli‐
nule) relationships with human development. Other studies have 
also reported positive associations between marsh bird occupancy 
and agriculture (Quesnelle et al., 2013; Valente et al., 2011). For ex‐
ample, gallinules, bitterns, coots and rails have all been observed 
foraging in agricultural wetlands (e.g. flooded rice fields; Czech & 
Parsons, 2002) that are common in some parts of the southeastern 
USA (Pierluissi & King, 2008). Thus, we hypothesize that flooded ag‐
ricultural wetlands, wet meadows that serve as pasture or both may 
provide foraging opportunities for some species. We are not aware 
of other studies documenting positive associations between marsh 
birds and human development. We suspect this may reflect use of 
artificially created wetlands at fine scales near human development 
(American bittern) and covariation of broadscale development with 
important wetlands whose features were not adequately captured 
by our covariate set (i.e. important wetlands happen to be juxta‐
posed near development; purple gallinule). Clearly, however, these 
hypotheses warrant further investigation.

Many studies have also demonstrated the importance of fine‐
scale cover of emergent vegetation to marsh birds (Alexander & 
Hepp, 2014; Budd & Krementz, 2010; Darrah & Krementz, 2010; 
Flores & Eddleman, 1995; Winstead & King, 2006). Marsh birds use 
emergent vegetation for a variety of purposes, including nesting and 
brood rearing, escape cover and foraging (Darrah & Krementz, 2011; 
Legare & Eddleman, 2001; Lor & Malecki, 2006; Rush, Woodrey, & 
Cooper, 2010). Presence of emergent vegetation is clearly important 
for marsh birds, but our results imply that emergent vegetation that 
is locally available may be a necessary prerequisite but insufficient 
predictor of occupancy over broad extents and that a suite of other 
habitat features can greatly improve prediction of marsh bird occu‐
pancy (i.e. can help differentiate optimal emergent wetlands from 
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suboptimal emergent wetlands). Area of emergent wetland vegeta‐
tion was a suboptimal predictor for all 14 species, and other stud‐
ies have similarly found the amount of emergent vegetation to be 
an unsatisfactory predictor of marsh bird occurrence over broad ex‐
tents (Bolenbaugh, Lehnen, & Krementz, 2011; Darrah & Krementz, 
2008). In contrast, other wetland types were commonly included in 
top models and increased occupancy probability (scrub–shrub, pal‐
ustrine, etc.), which our results suggest is affected by the interplay 
of wetland attributes and anthropogenic disturbances over a variety 
of scales.

Presence of emergent vegetation is likely a necessary but insuf‐
ficient component of marsh bird habitat, where quality is also deter‐
mined by other attributes and disturbances within the surrounding 
landscape. Our data support this conclusion, as emergent vegetation 
was present within 500 m of >90% of our sampling sites, whereas 
marsh bird occupancy varied among sites. We suspect that if field 
sampling had occurred in areas lacking emergent wetland vegeta‐
tion, then the amount of emergent wetland would likely have been 
a strong predictor of occupancy. Given that field sampling occurred 
at wetlands containing some emergent vegetation (i.e. areas consid‐
ered to be breeding habitat for marsh birds; Eddleman et al., 1988) 
our scope of inference and prediction is thus limited to emergent‐
vegetated wetlands. This is appropriate given that non‐wetland 
areas and wetlands lacking emergent vegetation are not considered 
habitat for breeding marsh birds. Thus, presence of emergent vege‐
tation may enable differentiation of wetlands as potential habitat for 
marsh birds or not, but inclusion of other covariates allows distinc‐
tion between high‐ and low‐quality breeding habitat.

We also assessed empirical evidence for recent changes to breed‐
ing ranges for marsh birds and, to our knowledge, are the first to do so 
at the extent of the entire range of each species within the continen‐
tal USA. Concern over population declines and range contractions for 
marsh birds has been prevalent for at least three decades, yet range‐
wide status assessments for this group are rare. Our results indicate 
recent range contraction for five species (American bittern, American 
coot, black rail, purple gallinule, Ridgway's rail). However, we found 
little evidence of changes to breeding occupancy for several species, 
and evidence of increased occupancy for four species (common gal‐
linule, least bittern, pied‐billed grebe and sora). Population declines 
and range contraction likely occurred prior to our study, and temporal 
changes in occupancy may fail to detect abundance declines if the 
area occupied remains unchanged. Nonetheless, five species had de‐
clining breeding‐season occupancy over the 14‐year study, and those 
are species of conservation concern. Importantly, these results pro‐
vide a baseline for which future studies of the status and distributions 
of marsh birds can be compared, and thus fill a vital information gap 
for monitoring, conservation and recovery efforts for these birds.

Lastly, our analyses reduced a large set of plausible predictor 
variables to a smaller set of variables that were used to construct 
final model sets for predictive comparison. This approach produced 
models with few covariates relative to size of the initial covariate 
set, yet it remains possible that other tactics to reduce the number 
of covariates (or their individual contributions towards prediction) 

would result in different models, possibly with better predictive abil‐
ities. Alternative approaches to variable selection that still focus on 
out‐of‐sample prediction are also worthy of consideration for future 
studies. In particular, formal Bayesian variable selection methods 
can be employed to reduce large sets of predictor variables, or to use 
all variables simultaneously while optimizing the shrinkage of unin‐
formative parameters for prediction. For example, continuous model 
selection techniques like the Bayesian Lasso or ridge regression can 
include all variables simultaneously and optimize the prior distribu‐
tion of regression coefficients for prediction in order to regulate 
the magnitude of each coefficient and therefore its contribution to‐
wards prediction (Hooten & Hobbs, 2015; O'Hara & Sillanpää, 2009). 
These techniques have been successfully demonstrated in ecologi‐
cal applications for developing predictive models of the distribution 
and abundance of organisms (Gerber, Kendall, Hooten, Dubovsky, & 
Drewien, 2015; Stevens & Conway, 2019).

While our models provide the first data‐driven SDMs built at 
the extent of the breeding range for most of our 14 species, they 
also provide a foundation for further refinement to improve un‐
derstanding of multi‐scale habitat relationships and predictions of 
habitat suitability for marsh birds. Our spatial covariate data sets 
were limited in their temporal resolution and were only available as 
time‐invariant snapshots to aide spatial prediction. These data are 
updated periodically over time, however, as are the field‐sampling 
databases that store marsh bird detection–non‐detection records. 
Our models provide predictions that can be refined as additional 
data become available, and their Bayesian implementation provides 
a rigorous foundation for adaptation over time using Bayesian learn‐
ing (i.e. using posterior distributions from our models as priors to 
regulate updated parameter estimates; Hobbs & Hooten, 2015). 
This approach could also be used for spatial adaptation, effectively 
enabling regional heterogeneity in relationships (Nice et al., 2019) 
to be modelled directly by updating our models with localized data. 
Further refinement could also include spatially hierarchical analyses 
(e.g. Lipsey et al., 2017) that define occupancy at multiple nested 
levels (e.g. pixel, catchment, watershed) and model conditional oc‐
cupancy processes directly. This could facilitate modelling of cross‐
scale interactions among variables, reduce overlap of buffers used 
to measure covariate data, and enable study of range boundaries, 
furthering our understanding of why breeding marsh birds occur 
in some areas but not in others. Nonetheless, our models provide 
rigorous predictions of occupancy that were optimized for spatial 
prediction to take advantage of existing broadscale data on wetland 
attributes and human disturbances, and consequently will facilitate 
spatial prioritization of habitat conservation for this sensitive group 
of wetland birds.
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